Optimal Gaussian Kernel Parameter Selection for SVM Classifier
نویسندگان
چکیده
منابع مشابه
Optimal SVM parameter selection for non-separable and unbalanced datasets.
This article presents a study of three validation metrics used for the selection of optimal parameters of a support vector machine (SVM) classifier in the case of non-separable and unbalanced datasets. This situation is often encountered when the data is obtained experimentally or clinically. The three metrics selected in this work are the area under the ROC curve (AUC), accuracy, and balanced ...
متن کاملProtein Subcellular Localization with Gaussian Kernel Discriminant Analysis and Its Kernel Parameter Selection
Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex biological data before undergoing classification processes such as protein subcellular localization. Kernel parameters make a great impact on the performance of the KDA model. Specifically, for KDA with the popu...
متن کاملGaussian Three-Dimensional kernel SVM for Edge Detection Applications
This paper presents a novel and uniform algorithm for edge detection based on SVM (support vector machine) with Three-dimensional Gaussian radial basis function with kernel. Because of disadvantages in traditional edge detection such as inaccurate edge location, rough edge and careless on detect soft edge. The experimental results indicate how the SVM can detect edge in efficient way. The perfo...
متن کاملWeighted Feature Gaussian Kernel SVM for Emotion Recognition
Emotion recognition with weighted feature based on facial expression is a challenging research topic and has attracted great attention in the past few years. This paper presents a novel method, utilizing subregion recognition rate to weight kernel function. First, we divide the facial expression image into some uniform subregions and calculate corresponding recognition rate and weight. Then, we...
متن کاملKMOD - A Tw o-Parameter SVM Kernel for Pattern Recognition
It has been shown that Support Vector Machine theory optimizes a smoothness functional hypothesis through kernel application. We present KMOD, a two-parameter SVM kernel with distinctive properties of good discrimination between patterns while preserving the data neighborhood information. In classi£cation problems, the experiments we carried out on the Breast Cancer benchmark produced better pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2010
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.e93.d.3352